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AbstmcL Wt present a n ~ v  approach, based on the effectivemedium theory of metallic 
cohesion, lo the study of alloy phase sIabilily. 'The efficiency and applicability of 
the method is demonnrated ky studying ordering in Cu-Au alloys. The ground-state 
properties of the three stoichiometric Cu-Au ~ N C L U R S  are found to be in excellent 
agreement with experiment. Monte Carlo simulations have k e n  camied out m an 
effort lo understand the finite-temperature phase transitions. nese simulations give a 
very good description of the complete temperalumoncentration phase diagram, and 
illusuate the imporlance of going beyond a ked-latlice king model in describing phase 
transitions in these alloys. 

One of the most fascinating problems in metal physics is that of alloy formation. 
Alloys exhibit a rich variety of structures as a function of temperature and 
concentration [l, 21 and there has been an intensive effort to understand alloy stability 
[3]. The problem has often been described by king models on a k e d  lattice, and the 
statics and dynamics of these models have been extensively investigated [4,5,6]. In 
metals and semiconductors, the electrons play a crucial role in determining stability, 
and therefore it is of utmost importance to incorporate an accurate description 
of electronic structure into the construction of an alloy Hamiltonian 171. Such 
approaches are usually based on density functional theory pFr) which provides a 
formalism for calculating the ground-state energy of electrons for a given configuration 
of atoms [8]. 

In applying DFT, without further approximations, to alloys' phase diagrams, one is 
faced with the currently insurmountable task of calculating the energies of all possible 
alloy structures. In the search for simplification, a few different approaches have been 
developed, in all of which the interactions in the alloy Hamiltonian are derived by 
extrapolating from some known reference structures. One such approach is based 
on an accurate description of the disordered structures using the coherent potential 
approximation and the KKR scheme and the method of concentration waves to analyse 
ordering tendencies [7,9]. The KKR-CPA approach has also been used to obtain the 
leading term of the Landau free energy functional describing a phase transition 
[7, lo], and, in conjunction with the cluster variation method, has been used to 
construct phase diagrams [ll]. In another approach, the cluster interactions entering 
a generalized Ising model are constructed from accurate D F ~  total energy calculations 

0953-8984~/3.57191+12$04.50 0 1992 IOP Publishing Ud 7191 



7192 Zhigang xi et al 

of a set of ordered periodic structures [12,13,14]. Among other approaches, not based 
upon DIT, is a generalized king model derived from tight-binding calculations 13,151. 

In ked-lattice king models, there is no coupling of the structural degrees of 
freedom to the configurational (Ising) degrees of freedom. The cluster interactions 
derived from DFT or tight binding are volume dependent, and the importancc of this 
in determining phase stability has been emphasized in (121. However, a complete 
treatment of the interplay between structural and cofigurational changes has so far 
remained beyond the scope of fit-principles DIT-based calculations. In this paper 
we present an alternative DIT-based scheme which can treat these different mriables 
on an equal footing. 

The present approach is based on the effectivemedium theory @ h q ,  which 
provides an efficient way of estimating the binding energy of a metallic system of 
atoms [16]. It is derived from DIT by making an m a &  for the electron density, 
n ( r )  = Ci Ani(.), consisting of overlapping atomic densities An, ( r )  which are 
calculated in some reference system (the ‘effective medium’). For each atom this 
reference system can be chosen as an atom embedded in a homogeneous electron 
gas of an appropriate density or an atom in the pure metal in a face-centred-cubic 
(FCC) structure with a suitable lattice constant. The success of the scheme in pure 
metals has been demonstrated through the study of a variety of different phenomena 
including surface relaxations, phonons [16], reconstructions [17] and premelting [MI. 
The related embedded atom method PAM) has been applied successfully by Foiles 
et al and by Johnson to study the heat of solution in dilute alloys [19]. An ab initio 
approach based on the EMT density msa& has been applied to pure metals. 711is 
method can be applied at wrious levels of approximations but does not rely on any 
experimental information [20]. The EMT Hamiltonian used for describing alloys in this 
work, relies on experimental information about the ground-slate (T = 0) properlies of 
a few ordered structures such as the pure metals and maybe one ordered compound. 
We are currently working on extending the ab initio scheme to alloys. 

The major advantages of EMT are that (a)  the method is essentially identical 
for pure metals and alloys, (b)  since it can provide the binding energy of an 
arbitrary configuration of atoms, no a priori assumptions regarding the form of 
the alloy Hamiltonian need be made, and (c)  the simplicity of the construction of 
the Hamiltonian makes it feasible to investigate the phase transformation properties 
through computer simulations. EMT has also proven to be very useful in constructing 
an atomistic Landau theory of alloys 1211. The analysis of this functional showed 
that EMT provides a very good description of all qualitative aspects of ordering 
in Cu-Au alloys, including the appearance of the CuAu-I1 phase, even within the 
mean-field picture (211. The EMT approach also provides an eliicient route, through 
Monte Carlo renormalization group calculations [22], to the construction of Ginzburg- 
Landau funetionals for studying kinetics of phase transformations ID]. 

In the present uork, we use simulations to study the fmite-temperature phase 
transitions in the alloys of Cu and Au. 

The key quantity that characterizes the binding energy of an atom in the EMT 
is the so-called cohesive function E&i). (There is one such function for each 
atomic number 2.) This is a simple function of the embedding densily w of the 
atom, which is calculated as an appropriate average of the electron density coming 
from neighbouring atoms in the system. For a metal atom, EC,+,(E) exhibits a single 
minimum at some electron density nW This means that an atom can minimize its 
energy by seeking an environment with this electron density. The cohesive function 
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contains information about the volume dependence of the energy of the pure FCC 
metal: the cohesive energy of the metal is the minimum value of Ec, z (E) ,  the 
equilibrium lattice constant is determined by the embedding density no, and the bulk 
modulus is proportional to the cuwature of Ec, z (E) .  The cohesive function includes 
many-atom interactions because it is non-linear in the embedding density. It can 
be calculated as a function of embedding density for an atom in a homogeneous 
electron gas within the local density approximation [16,24]. The estimates of the 
cohesive energy, the lattice constant, and the bulk modulus obtained in this way are 
typically within lo%, 5%, and 30%, respectively, of the measured wlues. In studying 
alloy properties, we choose to adjust the parameters in the cohesive function for each 
kind of atom (Cu and Au) to exactly reproduce the experimental values for the pure 
metals in the FCC structure, thus eliminating one obvious source of error in analysing 
phase diagrams. It should be emphasized that this choice is not essential to the 
method. 

In the current EMT scheme, a neutral sphere is associated with each atom in 
the metallic system. In the atomic-sphere approximation (ASA), these spheres are 
assumed to be non-overlapping and space filling, implying a neglect of contributions 
coming from overlap of these neutral spheres. This is a reasonable approximation in 
close-packed structures of pure metals, and the binding energy, E F A ,  is given by the 
sum over the cohesive functions for all the atoms [I61 

E ~ ~ S A )  = EC,Z,(Ei). 
i 

In dealing with alloys consisting of components with very different neutral sphere 
radii, or with open structures, the corrections to the S A  become important. As we 
shall see, these corrections are mainly responsible for driving the ordering transitions. 
Going beyond the M A  leads to an additional term in the binding energy, E,, which 
can be written as [16] 

The fust part, aiEi, is proportional to the embedding density and the coefficient 
ai is the integral over a neutral sphere around atom i of the electrostatic potential 
from the charge density Ani associated with atom i. This is thus a measure of 
the electrostatic interaction of atom i with the electron tails from the neighbouring 
atoms. The second part, -a;Eifcc, is a pair potential which exactly cancels the first 
part for a pure metal in a perfect FCC structure [16]. 

As with the cohesive functions, the parameters entering the atomic-sphere 
correction energy E, can be estimated from self-consistent calculations of an atom 
in a homogeneous electron gas but, just a s  in the case of E,, we choose to adjust 
these in order to reproduce properties of the pure FCC metals. We call this model 
EMTl to distinguish it from a slightly modified version to be discussed later on. 

In the construction of the energy expressions, simple analytic functional forms are 
used for the atomic electron density fall-off and tor the cohesive functions. These 
functional forms have been discussed before [16] and mostly involve exponentials. 
This means that the evaluation of the binding energy involves pair sums of simple 
analytic [unctions and is, therefore, computationally very efficient. 
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The classical alloy Hamiltonian is the EMT binding energy written as a function of 
the continuous variables { R ; )  , which define the positions of atoms, and the discrete, 
king-like, mriables {Ci) which specify the type of atom i. The Hamiltonian can be 
written as; 

The summations in this equation are over all atoms in the system. 
In a fixed-lattice king model, the positions are fired on a lattice and the occupation 

variables, defining whether a lattice site is occupied by a Cu atom or an Au atom, 
are the only degrees of freedom. The model cannot, therefore, describe changes in 
the positions of the atoms accompanying configurational ordering. Thew changes 
would be expected to affect the nature of transitions since, even at the level of 
global elastic deformations coupled to a nearest-neighbour Ising model, the behaviour 
is different from that of a rigid king model [25l. The work described here will 
be based on a Hamiltonian defined on a lattice but with the lattice parameters 
appearing as continuous variables. In this model, thc variables { R,} are replaced by 
three independent lattice constans in equation (2). This describes a minimal model 
which takes account of the coupling between lattice deformations and mnfigurational 
ordering. As is clear from equation (2 ) ,  however, the EMT Hamiltonian does not 
have to be restricted to a lattice and work based on this complete Hamiltonian is 
now in progress. The minimal model has already led to new phenomena such as the 
appearance of the CuAu-I1 phase [21], and a change in the nature of the CuAu mean- 
field transitions Irom first to second order; the results of the Montc Carlo simulations, 
to be presented hem, further demonstrate the differences with a fixed-lattice Ising 
model. 

Before proceeding to the study of finite-tempcraturc phase transitions, EMT 
was applied to study the ground-state properties of the the three stoichiometric 
compounds, Cu,Au, CuAu, and CuAu,. The results are summarized in table 1 
and in figure I@). Comparing to both experiments and ab initio calculations, we 
see that EMT, gives a very good description of the variation of the lattice constant 
with composition [12,14]. It describes the tetragonal distortion in the CuAu-I 
phase accurately, and the predicted trend in the formation energy agrces wll with 
experimental data. However, E M T ~  generally overestimates the binding. 

Figure l(a) clearly demonstrates that a good description of the variation of the 
lattice constant with composition is essential for determining alloy properties. These 
volume effects are also present in om-based generalized Ising models [12]. We show 
in this work that with EMT, one can go one step beyond and investigate the effects of 
shape and symmetry changes on the phase diagram. As is clear from equation (2),  
EMT can describe vibrational and local relaxation cffccts I181 which have, so far, not 
been included in the simulation of alloys. 

The EMT energy has two contributions: thc cohesive functions and the atomic- 
sphcrc-corrcction energy which can, rcspcctively, be viewed as the structural and 
configurational contributions to the energies of alloys. This is clearly illustrated in 
figure l(b), which shows that the equilibrium volume and bulk modulus are mainly 
determined by Ec, whereas the heat of alloy formation is given primarily by EAs. 
A similar analysis of the tetragonal distortion in CuAu shows that the c / a  ratio is 
also determined by the cohesive function. This discussion indicates that a proper 
description of orderdisorder transitions can only be obtained if both types of terms 
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Figum L (U)  Calculated binding energy (EB) per atom relati% to the energies of the 
elemental conStituenIs Cor Cu,Au, CUAu, and CuAu3 shown as functions of the lattice 
" a n t .  I h e  resuIIs are given for the mrrl parameter Y I  and the tetragonal distortion 
in the ordered CuAu uructure is neglected. (b) Contributions of the cohesive energy E, 
and the atomic-sphere mrrection Es to the gmund-state energy of the ordered C U 3 A u  
stmcture shown as functions of the lattice constant. 

Table 1. Calculated and experimental values for the lattice constant a, the tetragonal 
distortion parameter = / a .  the formation energy E and the disordering temperatures T, 
for the Cu-Au alloys obtained from Monte Carlo Simulations in the canonical ensemble. 
The WO experimental values of T, for CuAu (658 K and 695 K) are for the CuAu-I and 
CuAu-II structures, respectively. 

EMTi EMTz Model A t  Model B t  Expis§ 

CU3h 6.99 6.99 7.06 7.07 7.07 
a (au) CuAu 7.37 7.36 7.60 730 7.46 

CuAu3 1.45 7.46 7.54 1.52 7.59( 

c l a  CuAu 0.93 0.93 0.90 1.0 a93 

E (ev) CuAu -0.288 -0.091 -0.063 -0.091 -0.091 
Q3Au -0.231 -0.083 -0.036 -0.074 -0.074 

CUAut -0.181 -0.044 -0.026 -0.059 -0.038 

C U 3 h  1010 670 1146 942 663 

T. (K) CuAu 91011 708(5901[) 95011 88611 { :; 
CuAu, 790 480 677 698 = MO 

tFmm [12] model A 
%From [121 model B fitted to experimental parameters. 
§Lattice mnstants from 121; energies and temperatures from PO]. 
IlIheSe values are calculated without the tetragonal distortion. Without this distortion 
EMTI gives U = 7.20. E = -0.277 and  EM^^ P;ves a = 7.22, E = -0.082. 
TMeasured in disordered state. 

are adequately represented. The figure also clearly demonstratcs the source of the 
coupling, showing that ordering energies depend on the lattice constants which in 
turn are functions of the alloy configuration. 

One of the important features of EMT is that the physical origin of the various 
terms entering the binding energy is known and therefore the origins of phase stability 
can be investigated. For example, one can analyse the striking asymmetry between the 
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formation energy of the CuAu, and Cu,Au systems. We note from figure l(b) that 
the cohesive function determines the equilibrium lattice constant and bulk modulus 
and Em determines the stability. This is true for all three systems CuAu,, CuAu, 
and Cu,Au. Furthermore the variation in Em is similar for Cu,Au and CuAu,. 
As seen in figure 1, the lattice constant for Cu,h cnmes out smaller than that Cor 
CuAu,, simply because the Au electron density is more extended (due to the large 
5d shell) than the Cu electron density. Since Eps is more negative for the smaller 
lattice constants, the Cu3Au structure becomes more stable than the CuAu, structure. 
The importance of volume effects on phase stability has been noted in [12] and the 
discussion above illustrates that these effects are included in EMT and that lhey can 
be easily analysed. The tetragonal distortion accompanying the appearance of long- 
range order in CuAu also has its origin in the cohesive energy term, since in this 
layered structure the Cu and Au atoms can better optimize the electron density of 
their environment by tuning this distortion. 

As a first application of EMT to study finite-temperature phase transitions, Monte 
Carlo (MC) simulations were used to study the ordering transitions at the three 
stoichiometric compositions of Cu-Au. The space of positional degrees of freedom 
was restricted in this study to global changes of the lattice parameters. In this space, 
the state of an alloy can be described by the occupation variables {<,I, and the lattice 
parameters { a p ] ,  g = 1, 2, 3. Both of thcsc sets were treated as independent random 
variables in our Monte Carlo simulations, and the calculated thermodynamic averages 
are based on the partition function 

P 

It should be emphasized that this partition function is not equivalent to that of 
an effective hing model obtained from fit-principles calculations. Even if one used 
calculated ground-state energies of all possible spin (alloy) configurations on a lattice, 
with the lattice constants optimized for every configuration, to construct the Ising 
Hamiltonian, this would be equivalent to making a saddle-point approximation to the 
a,, integrals in the above partition function. No such approximation is made in our 
simulations and the fluctuations of the lattice parameters are taken into account in 
the same way as thc fluctuations in the king VdriabkS {Ci]. In the construction of 
the mean-field theory [',?I], the partition function is rewritten in terms of the order 
parameter describing configurational ordering, 0 

and the mean-field approximation approximates 2 by its saddle-point value obtained 
by minimizing the free energy functional F with respect to the lattice constants and 
the order parameter. 

The study of the stoichiometric compositions was based on simulations performed 
using a canonical ensemble on an FCC lattice with periodic boundary conditions, 
since we were interested in a detailed analysis of the transitions at these fixed 
concentrations. In contrast, the construction of the complete phase diagram, to 
bc described later, was based on simulations in the grand canonical ensemble. In 
the canonical ensemble simulations, downward temperature runs were performed to 



An effective-medium rheory approach to ordering in Cu-Au affoys 7197 

identify ground-state structures, and both upward and downward runs were used 
to determine the ends of the hysteresis loop. The typical hysteresis loops in the 
canonical ensemble simulations were large and the transition temperatures, quoted in 
table 1, were defined to be the last temperature point, coming from the disordered 
side, at which all the error bars of the four sublattice populations intersect the line 
defining the average concentration [6]. The transition temperatures obtained from 
this definition will be seen to be consistent with the locations of the phase boundaries 
obtained from the grand canonical simulations. 

Analysis of the CuAu transition shows clearly that ordering is accompanied by 
a tetragonal distortion (cf table 1). This feature could not have been captured 
by studying ked-lattice king models with volume- and concentrationdependent 
interactions, and therefore, although first-principles calculations showed that the 
ground slate of CuAu-I has tetragonal symmetry, effects of this on the phase transition 
could not be investigated [12]. The first-principles Ising model calculation did 
investigate the changes in volume accompanying the configurational ordering by 
minimizing the free energy with respect to both volume and spin configurations in the 
duster variation method (CVM) calculation [12]. The atomistic Landau theory analysis 
1211 showed that the free energy functional for the situation where cubic symmetry was 
imposed was very different from the one where tetragonal distortions were allowed. 
In the former case the CuAu-I transition was predicted to be second order and in 
Ute latter it was predicted to be first order. Also, the gradient terms leading to 
the appearance of the CuAu-I1 phase were absent in the functional obtained for the 
cubic structure. This clearly indicates that the coupling to the tetragonal distortion is 
crucial in these systems. 

In order to check the sensitivity of the results to parameters obtained by fitting to 
pure metals, and in an effort to see whether the agreement with experiment could be 
improved, we repeated our calsdations with a slightly modified model. The atomic- 
sphere-correction energy, EASI involves two parameters; one specifying the strength 
of the interaction and the other the decay length. The Eps energy in pure FcC metals 
involves only a product of these two parameters, whereas in alloys, the product and the 
decay length enter as two independent parameters. It is, therefore, possible to change 
the decay-length parameter without changing the description of the pure metals. By 
adjusting this parameter slightly for Cu so as to reproduce the experimental heat of 
formation of CuAu, we. obtain a different Hamiltonian. We denote this model EMTz. 
A complete discussion of the method and choices of parameters will be published 
elsewhere [27]. 

As can be seen from table 1, the results from EMT, and E M T ~  are very similar. 
The formation energies from E M T ~  agree much better with experiment and the values 
of T, are also much closer to experiment The fitting procedure employed in EMTZ is 
similar to that of model B of [12]. However, in model B, the ground-state properties 
of all the stoichiometric compounds and the pure metals were fitted to experiment, 
whereas in E M T ~ ,  only the properties of the pure metals and the formation energy of 
one ordered compound have been fitted. Moreover, the EMT Hamiltonian is never 
mapped onto an king model, and this is a crucial difference which manifests itself 
in the phase diagram obtained from the grand canonical simulations discussed later. 
Figure 2 shows the changes in the lattice constants and the variation of the long-range 
order parameter for the CuAu-I transition occurring in a 5 x 5 x 5  (500-atom) lattice. 
These features remain unaltered in the larger simulations, but finite-size effects are 
observed and a new feature appears in simulations with sizes of l o x  lox 10 or larger. 
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m u m  3. Finite-size scaling illustrated by size dependence of T, for the CuAu-l transition, 
The transition temperature is seen to scale approximately a s  he inverse of the size 
(number of atoms) for sufficiently large systems. 

The new feature to appear in the large simulations was the occurrence of 
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the CuAu-I1 phase, which is a long-period antiphase boundary structure with 
orthorhombic symmetry. The simulations on a fixed lattice with cubic symmetry 
show antiphase boundaries but an ordered antiphase boundary structure with the 
symmetry of the CuAu-I1 phase cannot, clearly, be observed in such simulations. The 
CuAu-I1 phase was characterized by a periodic spatial variation of the long-range 
order parameter along a direction perpendicular to the ordering direction [Zl], and 
by an orthorhombic distortion. Because of the large hysteresis effects inherent in 
the canonical simulations, and because of the narrow temperature range over which 
the CuAu-I1 phase is stable, it was dilficult to isolate the disordered -t CuAu-I1 and 
the CuAu-II+ CuAu-I transitions in these simulations. The Landau theory of these 
transitions [21] predicts, to first order, transitions separated by 16K. We are in the 
process of carrying out grand canonical simulations in systems larger than 4ooo atoms, 
where the hysteresis effects are smaller, to pin down these transitions; the results will 
be presented in a future publication [28]. 

The results for the Cu,Au and CuAu, transitions are shown in figure 4, where 
the long-range order parameters are plotted as a function of temperature. These 
simulations differ from the CuAu simulations in showing the presence of antiphase 
boundaries which are difficult to anneal out in a finite Monte Carlo run. This is 
the norm in Ising modcl simulations and the reason for the absence of antiphase 
boundaries in the CuAu simulation is quite possibly related to the lattice distortion 
which makes these defects energetically much less favourable. There is no distortion 
of the cubic symmetry in the Cu,Au and CuAu, transitions, and since, in these 
simulations, we include only nearest neighbours in calculating the densities at atomic 
sites, the antiphase boundaries are zero-energy defects as in the nearest-neighbour 
Ising model. 

- I I I I 

t 
1 ,  I I I I 

0.04 0.05 0.06 
temperature (ev) 

F@re 4. Long-range order parameters for 0 ~ 3 . 4 ~  and CuAq (cf text and description 
in Bgure 2 for details regarding the simulations). 
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Figure 5. (a) Phase diagram obtained lrom a grand canonical simulation on a FCC l a t t i n  
with variable lattice mnsmnts. Ihe poinls mark the boundaries of the hvo-phase regions 
obtained from concentration versus chemical potential pioU such as the one shown in 
the inset (cf discussion in rext). The simulation box mntained 5W atoms; periodic 
taundaly mnditions were imposed. The inset (b) shows a typical variation of average 
concentration with chemical potential. Thc triangles are lor data taken during increasing 
chemical potential mns and the squares for decreasing chemical potenlial runs, and 
together t hq  illustrate the hysteresis at the transitions. The data shown in the inset 
were obtained h m  runs of approximately 4w Monte Carlo sleps per atom. 

lb map out the complete temperature concentration phase diagram for the Cu-Au 
system, we ran our Monte Carlo simulations in the grand canonical ensemble. In the 
thermodynamic limit, the results should not depend on the type of ensemble chosen. 
The demarcation of phase boundaries and two-phase regions can be accomplished 
more readily in a grand canonical simulation The average concentration, calculated 
as a function of the chemical potential, shows discontinuities such as those shown 
in the inset of figure 5, at the temperature indicated in the figure. These mark 
the boundaries of the two-phase regions since it shows that no single-phase region 
exists in the concentration range between the limits of the jump [29]. The hysteresis 
loops at these chemical-potentialdriven first-order phase transitions can be made very 
small by running the simulation for approximately loo0 MCS/atOm. The phase diagram 
obtained from these simulations is shown in figure 5. The points mark the boundaries 
of the two-phase regions obtained from results such as those shown in the inset of 
figure 5. The agreement with experiment is very good in all respects cxccpt for the 
width of the two-phase regions. The relatively large width of the two-phase regions 
could be due to our neglect of local relaxations and phonons in calculating the phase 
diagram. The success of our model in reproducing the experimental phase diagram is, 
however, remarkable. The results shown were obtained from the 500-atom simulation 
and, hence, in the the abscnce of the CuAu-I1 phase. We plan to carry out larger 
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simulations in conjunction with our incorporation of local relaxations and vibrations 
into the scheme. 

In conclusion, we have shown that the effective-medium theory provides an 
accurate description of the interactions in alloy systems, including the coupling of 
structural and configurational degrees of freedom, and thus goes beyond generalized 
king model descriptions. The ground-state properties and characteristics of order- 
disorder transitions are accurately reproduced, and the computational simplicity of the 
method makes it ideally suited for carrying out numerical simulations of equilibrium 
and non-equilibrium properties. In addition, the construction of EMT makes it possible 
to analyse the physical origins of the phase stability of alloys by formulating analytical 
schemes based on a first-principles Landau theory approach. 
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